Welcome to Eric Hameleers (Alien BOB)'s Wiki pages.

If you want to support my work, please consider a small donation:

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

slackware:network [2008/12/03 00:24]
alien Add section explaining WPA2 configuration
slackware:network [2014/01/13 22:14] (current)
alien [WPA encryption] Typo fix
Line 1: Line 1:
 ====== Configuring your network in Slackware ====== ====== Configuring your network in Slackware ======
  
-//This article is intended as a reference guide to network card configuration in Slackware.//\\ The network scripts themselves are well-documented but there is not much other written documentation about what you put into the configuration files. The [[http://slackbook.org/html/network-configuration-tcpip.html|Network Configuration]] chapter in the //[[http://slackbook.org/html/|Slackware Linux Essentials]]// book explains in generic terms how Slackware's network configuration works, and how the use of DHCP (dynamic IP address assignment) differs from static IP's. I will try not to repeat what is written there.\\ There is another nice and freely available book on Slackware, called //[[http://slackbasics.org/html/|Slackware Linux Basics]]//. This book should be considered as required follow-up reading material once you mastered the Slackware Essentials. The [[http://slackbasics.org/html/netconfig.html|networking chapter]] is well worth reading.+//This article is intended as a reference guide to network card configuration in Slackware.//\\ The network scripts themselves are well-documented (inside the scripts) but there is not much other written end-user documentation about what you put into the configuration files. The [[http://slackbook.org/html/network-configuration-tcpip.html|Network Configuration]] chapter in the //[[http://slackbook.org/html/|Slackware Linux Essentials]]// book explains in generic terms how Slackware's network configuration works, and how the use of DHCP (dynamic IP address assignment) differs from static IP's. I will try not to repeat what is written there.\\ There is another nice and freely available book on Slackware, called //[[http://slackbasics.org/html/|Slackware Linux Basics]]//. This book should be considered as required follow-up reading material once you mastered the Slackware Essentials. The [[http://slackbasics.org/html/netconfig.html|networking chapter]] is well worth reading.
  
-My Wiki article essentially documents the ''/etc/rc.d/rc.inet1.conf'' file. The special case of the network device is the //wireless interface//. I dedicated a separate chapter to [[#wireless_networks|Wireless Networks]] which we also configure using ''rc.inet1.conf''follow up on that with a chapter on [[#wpa_encryption|WPA encryption]] which has it's own configuration in ''/etc/wpa_supplicant.conf''. The tail of this article looks at alternative (mainly GUI based) network configuration managers and the extent to which these may be useful in Slackware.+In essence, my Wiki article documents the ''/etc/rc.d/rc.inet1.conf'' file. The only available documentation about the configurable network parameters used to be at the bottom of that file, and it took the shape of commented-out examples. In Slackware 12.2 two man pages were added, for [[http://slackware.osuosl.org/slackware-12.2/source/n/network-scripts/manpages/rc.inet1.8|rc.inet1]] and [[http://slackware.osuosl.org/slackware-12.2/source/n/network-scripts/manpages/rc.inet1.conf.5|rc.inet1.conf]], both of which are based on this Wiki article. \\ The ''rc.inet1'' script in Slackware configures all your network interfaces - including wireless interfaces. If the ''rc.inet1'' script detects that it deals with a //wireless interface//, it will call the sub-script ''rc.wireless'' to configure this interface's wireless properties. Both scripts take their configuration information from the same file ''rc.inet1.conf''. \\ wrote separate chapter about [[#wireless_networks|Wireless Networks]] because a wireless network interface has so many more configurable parameters than a "wired" interface. The configuration of [[#wpa_encryption|WPA encryption]] a for wireless interface is documented in it's own chapter; the WPA parameters are taken from the file ''/etc/wpa_supplicant.conf'' instead of the ''rc.inet1.conf'' file\\ The final section of this article looks at alternative (mainly GUI based) network configuration managers and the extent to which these may be useful in Slackware.
  
 I will also try to give some historic perspective on the evolution of network support in Slackware, because I was involved in this a lot. I will also try to give some historic perspective on the evolution of network support in Slackware, because I was involved in this a lot.
Line 209: Line 209:
  
     * Note that I deliberately used an ESSID (the access point's Station Set Identifier) which has spaces in it. This requires that you use quotes around the name: //"my access point"//. When your access point has a name without spaces, you do not need these quotes - in fact it is better to leave those out: //WLAN_ESSID[1]=Darkstar//.     * Note that I deliberately used an ESSID (the access point's Station Set Identifier) which has spaces in it. This requires that you use quotes around the name: //"my access point"//. When your access point has a name without spaces, you do not need these quotes - in fact it is better to leave those out: //WLAN_ESSID[1]=Darkstar//.
-    * You may have defined your WEP key as a string of ascii characters (i.e. a readable passphrase like "Hogwarts") instead of a string of hexadecimal characters (like "6CC07C36169B8E7524886F9A19"). If you want to use this readable string instead of typing a series of HEX characters, you can use the following key format in ''rc.inet1.conf'' <code>+    * ** NOTE about WEP encryption:**\\ You may have defined your WEP key as a string of ascii characters (i.e. a readable passphrase like "Hogwarts") instead of a string of hexadecimal characters (like "6CC07C36169B8E7524886F9A19"). If you want to use this readable string instead of typing a series of HEX characters, you can use the following key format in ''rc.inet1.conf'' <code>
 WLAN_KEY[1]="s:Hogwarts" WLAN_KEY[1]="s:Hogwarts"
 </code> This is for a 128-bit (aka 104-bit) WEP key. The even weaker 64-bit (aka 40-bit) WEP keys are still being used - in this case you would need to provide one of 4 keys (or all four with one of them defined as active), this key would have to be the one that the access point considers active as well. Suppose we want to set key [2] to the ascii value "Hogwarts" and then make this the active key, this will take two ''iwconfig'' commands: "''iwconfig key [2] s:Hogwarts''" and "''iwconfig key [2]''". These commands can be combined into one: "''iwconfig key [2] s:Hogwarts key [2]''" and the corresponding entry in ''rc.inet1.conf'' would become (the first "key" word removed): <code> </code> This is for a 128-bit (aka 104-bit) WEP key. The even weaker 64-bit (aka 40-bit) WEP keys are still being used - in this case you would need to provide one of 4 keys (or all four with one of them defined as active), this key would have to be the one that the access point considers active as well. Suppose we want to set key [2] to the ascii value "Hogwarts" and then make this the active key, this will take two ''iwconfig'' commands: "''iwconfig key [2] s:Hogwarts''" and "''iwconfig key [2]''". These commands can be combined into one: "''iwconfig key [2] s:Hogwarts key [2]''" and the corresponding entry in ''rc.inet1.conf'' would become (the first "key" word removed): <code>
 WLAN_KEY[1]="[2] s:Hogwarts key [2]" WLAN_KEY[1]="[2] s:Hogwarts key [2]"
-</code> +</code> WEP key generators can be found all over the internet. A nice one is [[http://www.powerdog.com/wepkey.cgi|PowerDog's cgi script]]. Using WPA encryption is recommended, see the section that comes next if you need to know how to configure WPA encryption. 
-WEP key generators can be found all over the internet. A nice one is [[http://www.powerdog.com/wepkey.cgi|PowerDog's cgi script]]. Using WPA encryption is recommended, see the section that comes next if you need to know how to configure WPA encryption.\\ \\ It depends on your access point and the quality of the signal (think of interference because of nearby Access Points when you live in a densely populated area) whether you have to explicitly configure parameters as the channel and the rate. Leaving these undefined will cause the driver to scan for the appropriate channel and settle for a dynamic transmission rate. + 
 +It depends on your access point and the quality of the signal (think of interference because of nearby Access Points when you live in a densely populated area) whether you have to explicitly configure parameters as the channel and the rate. Leaving these undefined will cause the driver to scan for the appropriate channel and settle for a dynamic transmission rate. 
  
  
Line 278: Line 279:
   * There is a way to generate the hexadecimal value for the PSK if you have an access point which uses a passphrase. As root, run: <code>   * There is a way to generate the hexadecimal value for the PSK if you have an access point which uses a passphrase. As root, run: <code>
 wpa_passphrase YOURSSID passphrase wpa_passphrase YOURSSID passphrase
-</code> with the //YOURSSID// being the ESSID of your Access Point and //passphrase// is the ascii string you entered in the ccess Point's //WPA-PSK// configuration section. You'll receive an output, which looks like this: <code>+</code> with the //YOURSSID// being the ESSID of your Access Point and //passphrase// is the ascii string you entered in the Access Point's //WPA-PSK// configuration section. You'll receive an output, which looks like this: <code>
 network={ network={
     ssid="YOURSSID"     ssid="YOURSSID"
Line 383: Line 384:
  
 In Slackware, the way to start your network (the configuration of your //nics// and bringing the interfaces up, and creating a default route if required) is by running the command <code> In Slackware, the way to start your network (the configuration of your //nics// and bringing the interfaces up, and creating a default route if required) is by running the command <code>
-/etc/rc.d.rc.inet1+/etc/rc.d/rc.inet1
 </code> Restarting the whole network is done in a similar fashion: <code> </code> Restarting the whole network is done in a similar fashion: <code>
-/etc/rc.d.rc.inet1 restart+/etc/rc.d/rc.inet1 restart
 </code> This is quite crude, and not adequate for the dynamic detection and configuration of network devices. Therefore, when your computer boots, and UDEV detects your network hardware, it will run the following command after loading the kernel driver and determining the name of the interface (let's assume that it is //wlan0//): <code> </code> This is quite crude, and not adequate for the dynamic detection and configuration of network devices. Therefore, when your computer boots, and UDEV detects your network hardware, it will run the following command after loading the kernel driver and determining the name of the interface (let's assume that it is //wlan0//): <code>
-/etc/rc.d.rc.inet1 wlan0_start+/etc/rc.d/rc.inet1 wlan0_start
 </code> More generically speaking, you can start/stop/restart any network interface yourself by running one of the commands <code> </code> More generically speaking, you can start/stop/restart any network interface yourself by running one of the commands <code>
-/etc/rc.d.rc.inet1 INTERFACE_start +/etc/rc.d/rc.inet1 INTERFACE_start 
-/etc/rc.d.rc.inet1 INTERFACE_stop +/etc/rc.d/rc.inet1 INTERFACE_stop 
-/etc/rc.d.rc.inet1 INTERFACE_restart+/etc/rc.d/rc.inet1 INTERFACE_restart
 </code> </code>
  
Line 409: Line 410:
 Read more about it here: [[http://wicd.net/|http://wicd.net/]] Read more about it here: [[http://wicd.net/|http://wicd.net/]]
  
-Wicd installs a daemon which talks to your computer's //dbus// messagebus to detect network connects/disconnects. Configuration of your wireless as well as wired interfaces requires that you run X Window so you can use the graphical //wicd-client//.+Wicd installs a daemon which talks to your computer's //dbus// messagebus to detect network connects/disconnects. Configuration of your wireless as well as wired interfaces is done via a //wicd client//. You can either run the graphical //wicd-client// in your X Window session (KDE, XFCE, blackbox, ...), or use the console program //wicd-curses// if you are not using X.
  
-<note warn>If you want to use wicd, you will hav to remove any network interface configuration information from ''/etc/rc.drc.inet1.conf'' in order to prevent a struggle for power between wicd and Slackware's ''rc.inet1'' script.</note>+<note warn>If you want to use wicd, you will have to remove any network interface configuration information from ''/etc/rc.drc.inet1.conf'' in order to prevent a struggle for power between wicd and Slackware's ''rc.inet1'' script.</note>
  
 === lxnm === === lxnm ===

Personal Tools
sponsoring